2

1

3

Mark schemes

Q1.

(a) **M1** E_{\bullet} V^{3+} (V^{2+}) > E_{\bullet} Zn^{2+} (Z^{2+})

OR EMF of reaction between V^{3+} and Zn = (+)0.50 V

M2
$$E_{\bullet}$$
 $V^{2+}(/V) < E_{\bullet}$ Zn^{2+} (/ Zn)

OR EMF of reaction between V^{2+} and Zn = -0.44 V

(b) Mg

Only

(c) EMF = (+) 0.78 (V)

Fe(s) I Fe²⁺(aq) II VO²⁺(aq), H⁺(aq), V³⁺(aq) I Pt(s)

Allow Fe(s) I Fe²⁺(aq) II VO²⁺(aq), V³⁺(aq) I Pt(s)

Ignore state symbols

Fe(s) \rightarrow Fe²⁺(aq) + 2 e⁻ Ignore state symbols

(d) **M1** n MnO₄⁻ = 29.43 × 10⁻³ × 0.0200 = 5.89 × 10⁻⁴ mol

M2 n V²⁺ = 5.89 x 10⁻⁴ ×
$$\frac{5}{3}$$
 = 9.81 × 10⁻⁴ mol
M2 = M1 × $\frac{5}{3}$

M3 mass NH₄VO₃ = $9.81 \times 10^{-4} \times 116.9 = 0.1147 \text{ g}$ $M3 = M2 \times 116.9$

M4 % purity =
$$\frac{0.1147 \times 100}{0.151}$$
 = 76.0 %
M4 = M3 × $\frac{100}{0.151}$
Allow 75.9 or 76.2 %
Answer to 3 significant figures

[10]

1

1

3

Q2.

(a) More shells

OR

more energy levels.

Allow Ca has 4 shells and Mg has 3 shells

Do not accept more outer shells

Ignore shielding

Ignore subshells/orbitals/more electrons

(b) $Mg(s) + H_2O(g) \rightarrow MgO(s) + H_2(g)$ State symbols required Allow multiples

(c) **M1** (Ba is more reactive) because <u>outer/valence</u> electrons further from nucleus/less attracted to the nucleus/lost more easily

M2 Insoluble barium sulfate (is formed)

OR

Ba +
$$H_2SO_4 \rightarrow BaSO_4(s) + H_2$$

M3 Barium sulfate prevents further reaction (with sulfuric acid)

OR

Barium gets coated with barium sulfate (so no more barium reacts)

(d) **M1** P = $100\ 000\ Pa\ and\ V = 348 \times 10^{-6}\ m^3$

M2 n =
$$\frac{PV}{RT}$$
 or $\frac{100\ 000\ x\ 348\ x\ 10^{-6}}{8.31\ x\ 298}$

M3 n = 0.01405 mol

M4 n metal nitrate = $0.01405 \times \frac{2}{5} = 5.62 \times 10^{-3} \text{ mol}$ M4 = M3 x $\frac{2}{5}$

M5
$$M_r$$
 metal nitrate = $\frac{0.832}{5.62 \times 10^{-3}}$ = 148(.0)
 $M5 = 0.832 \div M4$

M6
$$A_r$$
 of metal = 148.0 - (2 × 14 +2 × 48) = 24(.0) = Mg
 $M6 = M5 - 124$ **and** identity of a metal with 2+ oxidation state

(e) M1 Na + Al + 2 $H_2 \rightarrow NaAlH_4$

M2 contains oppositely charged ions/ Na⁺ and AlH₄⁻ ions

M3 strong attraction between (oppositely charged) ions

3

6

(f) 3 NaOH + H₃PO₄ → Na₃PO₄ + 3 H₂O
 Allow multiples and ignore state symbols
 1

 (g) Li⁺+ CoO₂ + e⁻ → Li⁺(CoO₂)⁻
 Allow Li(CoO₂) as product
 1

 (h) The electrode reactions can be reversed (by applying a reverse potential)
 Allow reaction is reversible (by applying a reverse potential)
 1

 (h) If the electrode reactions can be reversed (by applying a reverse potential)
 1
 1
 1

Q3.

(a) Allow to complete the circuit

Or

Allow ions to move (between half cells)

Allow to maintain electrical neutrality

Do not accept electrons flowing

Potassium/sodium nitrate or any soluble ionic compound that does not react with H⁺ or magnesium ions or chloride ions

Allow any soluble ionic compound that does not react with acid or magnesium ions or chloride ions

(b) No change

(c) EMF increases

(d) $Mg + 2HCI \rightarrow MgCI_2 + H_2$ Allow $Mg + 2 H^+ \rightarrow Mg^{2+} + H_2$ Ignore state symbols allow multiples

[5]

2

1

1

1

Q4.

(a) $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

1

(b) $CH_3OH + H_2O \rightarrow CO_2 + 6 H^+ + 6 e^-$

1

(c) 1.23 (V)

1

(d) Reactants supplied continuously

Allow fuel continuously supplied

Allow continuous supply of chemicals

1

(e) Methanol (is liquid so) can be stored easily or transported easily

More energy can be produced from 1 cm³ of

methanol (liquid) than from 1 cm³ of hydrogen (gas)

Ignore references to safety and cost

Do not accept no greenhouse gas emissions

[5]

Q5.

(a) MnO_2

1

1

(b) allows ions to move/flow/transfer

ignore to allow current/charge to flow

do not accept electrons to flow

or
to complete the circuit
or
acts as a salt bridge

1

(c) $2 \text{ Ag} + \text{ZnO} \rightarrow \text{Zn} + \text{Ag}_2\text{O}$ $ignore \ state \ symbols$

1

(d) $O_2(g) + 2 H_2O(I) + 4 e^- \rightarrow 4 OH^-(aq)$ ignore state symbols allow multiples

1

$$E^{\text{\⦵};} = (+) \ 0.4(0) \ (V)$$

1

1

(e) same <u>overall</u> reaction or $2 H_2 + O_2 \rightarrow 2 H_2O$

[6]